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Abstract Relaxation through phonon exchange of adsorbates on the surface of a

crystal is considered. The effect of the thermal phonon field on the time

evolution of the adsorbate is taken into account with finite-memory-time

reservoir theory. Also, the low-intensity photon absorption profile is

evaluated. The spectrum has a sharp cutoff at the Debye frequency WD of the

crystal and a memory-induced extra resonance at wD + W0 1 where w0 is an adsor-

bate transition frequency. Both features of the profile are explained in

physical terms.
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Abstract Relaxation through phonon exchange of adsorbates on the surface of a

crystal is considered. The effect of the thermal phonon field on the time

evolution of the adsorbate is taken into account with finite-memory-time

reservoir theory. Also, the low-intensity photon absorption profile is

evaluated. The spectrum has a sharp cutoff at the Debye frequency W D of the

crystal and a memory-induced extra resonance at w D + woo where w0 is an adsor-

bate transition frequency. Both features of the profile are explained in

physical terms.

1. Introduction

When an atom or molecule is adsorbed on the surface of a solid, a variety of

processes may occur. Most extensively studied, because of practical applica-

tions, is the interaction between a diatomic molecule and a metal substrate.

Such molecules bind very strongly to the surface, and the molecular wave func-

tions extend into the metal (chemisorption). This leads to electron-hole pair

formation of conduction electrons (charge transfer from the molecule to the

metal), which gives rise to thermal relaxation of the adsorbate (Rantala and

Rosen 1986, Volokitin et al 1986, Morawitz 1987). Besides this electronic

decay, the internal molecular stretching mode can also couple kinetically to

the motion of the crystal atoms. Effectively, vibrational internal energy of

an excited molecule can be converted into kinetic energy of the lattice atoms

(phonons), which provides a second thermal decay channel for the adsorbate

(Casassa et al 1986, Beckerle et al 1990). In model calculations it is
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usually assumed that the molecular kinetic degrees of freedom couple to the

bulk vibrational modes of the crystal. In certain situations, however, a

molecular resonance can coincide with the peak in the surface-phonon disper-

sion relation. Thermal relaxation is then dominated by kinetic coupling to

surface phonons, rather than to bulk phonons (van Smaalen and George 1987,

Dumas et al 1990). Also, migration of the molecules over the surface of the

solid might affect the relaxation mechanism (Efrima and Metiu 1978, Persson

and Hoffmann 1988), and when the adsorbates form a gas-solid interface, equi-

librium with the desorption channels should be taken into account. When the

experiment is performed in vacuum, thermal desorption leads to a loss of

molecules, which does not affect the relaxation of the remaining molecules.

We shall consider the most simple situation of an atom (no internal

modes), adsorbed on the surface of a dielectric crystal. Then the atom will

be bound to the surface by a van der Waals potential, which has a width of the

order of 1 A, and is in good approximation a Morse potential (Chou and

Chelikowsky 1987, Muller 1990). Thus the atom is entirely outside the crystal

(physisorption), and overlap of electronic wave functions can be neglected.

As a further simplification, we shall assume that the motion of the atom ,mass

m) is restricted to the direction perpendicular to the surface, and chat the

bond is brought about by a van der Waals interaction with the nearest crystal

atom (mass M) only. With u the position operator of M with respect to its

equilibrium position, and ze the position operator o' in, the interactionz



potential V(r) depends on the distance r - Ize - ul between m and M (fig. 1).z

Z=O0

0310
S M

ze~ mz . + z

0 4

0 0

Fig. i. Pictorial representation of an atom with mass m near a solid in z <

0, consisting of atoms with mass M. The plane z - 0 is the thermal equi-

librium position of the surface, and the atom m is located on the positive z-
axis.

The amplitude of vibration of M1 is of the order of 0.1 A, which is much

smaller than the average value of z. Therefore we can make a Taylor expansion

of V(r) around r - z, or equivalently, u - 0. This yields
dV

V(r) - V(z) (ue Z ) -r(r - z) (I.1)

The operator u is linear in the creation and annihilation operators for

phonons, and consequently the omission of higher-order terms in the expansion

(1.1) has the effect of neglecting single-step multiphonon transitions between

the adsorbate bound states. For a Morse potential such an approximation is

not necessary, and it has been shown by model calculations that multiphonon



transitions play a negligible role indeed, provided that the resonances of the

adbond (atom in potential well) are well below the Debye frequency w D of the

crystal.

2. Relaxation

For the Hamiltonian of the system we can write

H - H + H + H (2.1)
a p ap

Here, H represents the adbond Hamiltonian, consisting of the kinetic energya

of m and the potential V(z) from eq. (1.1). The Hamiltonian H represents theP

phonons of the crystal, and thereby the motion of M. The interaction between

the adsorbate and M is accounted for by Hapt which equals the second term on

the right-hand side of eq. (1.1). With a an arbitrary operator, the cor-

responding Liouvillians are defined as

L.a - C [Hila] i - a,pap , (2.2)

and the equation of motion for the density operator p of the system attains

the form

i - _ (L + L + L )P (2.3)
dt a p ap

The equation of motion (2.3) describes the time evolution of the adbond,

and of every atom in the crystal through the phonon field. We are interested

in the adsorbate part of p(t), which is defined as

p(t) - Trpp(t) , (2.4)
p

where the trace runs over all phonon states. An equation of motion for the

reduced density operator Pa(t) is usually derived with standard reservoir



C

theory, in which the phonon field of the crystal is considered as a thermal

reservoir with equilibrium density operator Pp* This pp can be taken as

p p - N exp(-Hp/kBT) , (2.5)

in terms of the temperature T and Boltzmann's constant k The normalization

factor is N - Tr exp(-Hp/kBT). Then, pp will not be affected by the few atoms

on the surface. However, the time evolution of pa (t) is influenced by phonon-

exchange interactions between the adbond and the crystal. Effectively, this

gives rise to thermal relaxation of the adbond towards thermal equilibrium

with the crystal.

With standard reservoir theory, the reservoir enters the equation of mo-

tion for p a(t) parametrically through the correlation function

- 2 - -iL r

f(r) - Trpue L (2.6)

for the case where the interaction is given by eq. (1.1). The relaxation con-

stants, which are the matrix elements of the relaxation operator, can be

expressed in terms of the Fourier-Laplace transform

f(W) - F dr e f(r) , (2.7)

and with w equal to resonance frequences of the adbond (level separations in

fig. 1). Both f(r) and f(w) can be evaluated explicitly (Arnoldus et al

1989). The behavior of f(r) is illustrated in fig. 2, and fig. 3 gives the

corresponding f(w).

A common approximation in reservoir theory is the Markov approximation,

in which it is assumed that the reservoir response time to perturbations is
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Fig. 2. Real (a) and imaginary (b) parts of the reservoir correlation func-
tion f(r), multiplied by 2MwD/3 , for a harmonic crystal and zero temperature.

The horizontal variable is wDr.

-. 5

-,5 5

Fig. 3. Real (a) and imaginary (b) parts of the Fourier-Laplace transform

f(w) of the function f(r) from fig. 2. The horizontal variable is w/COD , and

the vertical variable is scaled with a factor 2M D/3. For w < 0 and w > wD
the real part vanishes identically. The imaginary part has a singularity at W
- W., due to the sharp cutoff of the dispersion relation at the Debye fre-

quency. For finite termperatures there is also a singularity at W - "WD (van

Hove singularities).



very short compared to the relaxation times that are induced by the reservoir

in the system (the adbond). This response time is the decay time of the func-

tion f(r). Due to the cutoff of the phonon dispersion relation at WD' f(W)

has a cutoff at wD' as shown in fig. 3. Its inverse f(r) therefore decays in

a time r - l/DP as illustrated in fig. 2. It turns out that for phonon

relaxation of adsorbates, relaxation constants can have the same order of mag-

nitude as w D# which invalidates a Markov approximation. An additional

complication is that an adbond resonance frequency can be larger than WD' in

which case Markovian reservoir theory does not apply at all. In order to

resolve these problems, we have developed a generalized finite-memory-time

reservoir theory which puts no restrictions on the decay time of f(r) and the

order of magnitude of the decay constants and the relevant frequencies

(Arnoldus and George 1987). It appeared that the relaxation in the equation

of motion could again be expressed entirely in terms of f(w), but now f(w) ap-

pears for all w, rather than only at the adsorbate resonances. For the

Fourier-Laplace transform of pa(t), we obtained the formal result

iPa(W ) - w - L a + ir(w) Pa(0 )  (2.8)
a

for a given initial value pa(0). The relaxation operator P(w) is given by

r(w)a -Tr L L (a) (2.9)
a pap w - L - L Lap a pa p

where aa is an arbitrary adbond operator, and the trace runs over phonon

states only. Matrix elements of the (Liouville) operator F(w) can be

evaluated explicitly in terms of f(w) and matrix elements of dV/dz (Arnoldus



and George 1988a). When eq. (2.8) is transformed to the time domain, then the

w-dependence of F(w) gives rise to a memory in the time evolution of Pa(t).

The memcrj kernel is the Fourier-Laplace inverse of r(w), which is propor-

tional to f(r).

The time evolution of pa (t) does not have much relevance, because due to

the relaxation, the operator pa (t) will approach its thermal-equilibrium value

pa quickly. From eq. (2.8) it follows that pa is the solution of

(La - iF(0))p a - 0 (2.10)

Apparently, the steady-state density operator is determined by r(W) at W - 0

only. This r(0) is different from its Markovian equivalent.

3. Absorption Profile

The measurement of pa (level populations) would provide information

about the relaxation constants which make up the matrix r(0), but it does not

reveal the dynamical interaction mechanism between the adsorbate and the crys-

tal. Dynamical features of the system do no' only determine the time

evolution of the density operator, but also the time regression of quantum

operators in the Heisenberg picture. For instance, correlation functions of

the dipole moment u(t) - y(t)e z determine the photon absorption profile of the

adbond. When a low-intensity infrared laser with frequency W irradiates the

system, then the absorbed energy per unit of time is given by

I(w) - w Re lim F dr elwr Trp(t)[p(t+r),y(t)] (3.1)
t- 0



Here, an overall constant has been supressed. In the Schrodinger picture,

this becomes

I(W) - w Re F dr Trpei(wL)r[, (3.2)

with L - L + L + L . Hence the exponential which governs the time regres-a p ap

sion is identical to the time evolution operator of the density operator r(t)

of the system (see, eq. (2.3)). Consequently, the absorption profile carries

information about the dynamics of the adbond system, and this is directly

amenable for experimental observation (Chabal and Sievers 1980).

Expression (3.2) can be evaluated with finite-memory-time reservoir

theory. The formal result is

(w)a x L + iR(e) (L - iT(w))p , (3.3)
a

where the trace runs over adbond states only. The Liouvillians L and L arex y

defined by

Lxaa - a , (3.4)

L ya - [M,a a] (3.5)

In eq. (3.3), the inverse operator following L is the same as in eq. (2.8)x

for the time evolution of Pa(t). Again, a memory effect on I(w) is reflected

in the frequency dependence of the relaxation ,operator r(w). Furthermore, we

have a term with T(w), which is absent in a Markov approximation. It can be

shown that this term arises due to the fact that the steady-state density

operator p of the entire system does not factorize as papp We call T(w) the

initial-correlation operator, since it accounts for correlations between the



adbond and the phonons at time r - 0 in eq. (3.2). The Liouville operator

T(w) is found to be

T(w)a a - Tr L L L ap(ap) , (3.6)a pap w-L -L y +
a p i0+  L L apa

a p

and its matrix elements can be expressed in terms of f(w) and matrix elements

of dV/dz. The result, however, is cumbersome (Arnoldus and George 1988a).

4. Line Shape

The absorption profile I(w) acquires contributions from all adbond tran-

sitions, and interferences between these. In order to illustrate some

important properties of I(w), we consider the situation where the potential

well supports only two bound states. Let Ii> be the lowest state, 12> the ex-

cited state, and w0 the frequency separation between them. We also define a

dipole parameter

M "22 , 2 (4.1)

which measures the difference in permanent dipole moments of the two states,

relative to their transition dipole moment A21" Then it is straightforward to

evaluate I(w) explicitly, but the expression is not very illuminating.

Figures 4 and 5 show two representative profiles, although the line widths are

highly exaggerated (for illustrative purposes). In a Markovian theory, the

line shape is a Lozentzian, which is symmetric around a frequency close to w0
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I (M)

2

0
0 2 2

Fig. 4. Absorption profile I(c) as a function of C - w/ .w The adbond

resonance is located at = 0.65 (dotted line), and the dipole parameter is m

-0.7.

0.2 -

1(W)

0.1 

0 I 2 3 4

Fig. 5. Absorption profile for the same parameters as in fig. 4, except that

here 0- 3. Notice the different scale on the vertical axis.

0 i t mn m | I a I|I|llII nmi lm



13

(there is only one relaxation constant in the Markov approximation: its real

part is the line width at half maximum and its imaginary part equals the shift

from w 0 ). Figure 4 shows a typical case for w 0 < W D" The big peak around the

dotted line comes from the term proportional to L in eq. (3.3), and it isy

very close to the Markovian Lorentzian for w < w D (in fact, they coincide

within drawing accuracy). It can be shown analytically that this L -y"

contribution to I(w) is identically zero for w > wD' due to the w-dependence

of the relaxation operator r(w), e.g., due to memory effects. The small peak

at w > w D comes from the term proportional to T(w), and is therefore entirely

due to memory effects. We called this a memory-induced extra resonance

(Arnoldus and George 1988b). This part of the spectrum is proportional to the

parameter m, and therefore requires a permanent dipole moment. Figure 5 gives

I(w) for w 0 > WoD. The peak on the left is the tail of the Lorentzian around

w0' cut off at w - wD. The peak on the right is the memory-induced line,

which has a cutoff at w - w0 + D'

The physical explanation for the various properties of the line shape is

illustrated in fig. 6. Diagram (a) is an elastic photon-phonon conversion,

responsible for the L -part of the spectrum, which becomes a Lorentzia:7 _n theY

Markovian approximation. A photon is absorbed from the laser, and sub-

sequently converted into a phonon, which is emitted into the crystal. The

reverse process, not shown, in which a phonon is absorbed and a photon is

emitted, also occurs. The net absorption is the balance between the two

processes. Then it is obvious that these processes do not happen for w > w D,



because there are no phonons with a frequency larger than wD' Diagrams (b)

and (c) show the processes for the memory-induced line. It follows im-

mediately from the figure that these processes can only occur for jW W01 <

SD' which explains the cutoff of this line at w0 + W D" The reverse processes,

not shown, also contribute. These are stimulated emissions of photons by the

adbond into the laser field, and the initial state for these diagrams is 12>,

rather than ji>.

-- 12) D

WD

W DD

"Jo

a b c

Fig. 6. Energy-conserving diagrams which contribute to the absorption profile

for a two-state system. A double-line arrow represents a photon, and a

single-line arrou corresponds to a phonon. The reverse processes, with 12> as

initial state, are not shown.



5. Conclusions

We have studied the spectral line shape of an adsorbed atom on the sur-

face of a crystal. Phonon exchange interactions between the adbond and the

crystal are responsible for the formation of the line shape. It was shown

that Markovian reservoir theory, which predicts a Lorentzian line shape, is

inadequate in general, due to the fact that the Debye frequency is of the same

order of magnitude as the adbond transition frequencies. Finite-memory-time

reservoir theory takes into account properly this low cutoff of the dispersion

relation, and it provides closed-form analytical expressions for the line

shape. It appears that the spectral profile drops to zero identically for W >

WD* In addition, a memory-induced line appears around w 0 + W D" Recently,

Georgievskii and Stuchebrukhov (1990) have found very similar results by a

direct numerical integration of the Schr6dinger equation.
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